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Amazing Progress of ML/AI
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The challenge of Today:

Building ML Applications at SOTA scale is expensive!
(Million $)

Further scaling is facing non-linear bottlenecks. 
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0.5 GB/s100Mbps

Decentralized Network

Communication Bottlenecks across Infrastructure

100Gbps

Data Center Serverless Environment

Ccommunication becomes slower, open up more choices (and some can be cheaper);

The more we can optimize communications, the more choices we have 
when building our infrastructure.

(Multi-cloud) Spot Instances
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From Cloud to Decentralized Compute Resource
This is $4.09/hour for 

an A100 GPU.

This is what you 
can get from a 
decentralized 
GPU pool!
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Accommodate LLM training through 

heterogeneous network.
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Pipeline Parallelism
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1. How to schedule the communication 
to accommodate the decentralized 
connections?

2. How to compress forward activations 
and backward gradients?
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Decentralized Training of Foundation Models

• Decentralized training of FM: the network is 100× 

slower, but the pre-training throughput is only 

1.7~3.5× slower!

• Decentralized fine-tuning of FM: AQ-SGD 

communication-efficient pipeline training with 

activation compression.  

[NeurIPS 2022-(a)] [NeurIPS 2022-(b)]
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Accommodate Communication in a Decentralized network 

A bi-level scheduling algorithm based on an extended balanced graph partition to 
estimate the communication cost:

§ Data parallel communication cost: nodes handling the same stage need to 
exchange gradients;

§ Pipeline parallel communication cost: nodes handling nearby stages for the same 
micro-batch need to communicate activation in the forward propagation and 
gradients of the activation in the backward propagation.

(c) Coarsened graph  !𝑮 
decoding the cost of 

pipeline parallel

Device d1

…

(a) Communication 
Topology Graph G 

over N devices

Device d2

(e) Open-loop-traveling-
salesman provides a 

pipeline structure

(2)

(d) perfect matching corresponds 
to how devices in Ci and devices 
in Cj communicate in a pipeline.

(1)

(b) Each partition Ci deals 
with one stage, running data 
parallel within each partition

C2

C1

C3



1010

AQ-SGD

𝑚𝑖𝑛
!∈ℝ!

𝑓(𝑥): = 𝔼$∼𝒟𝐹(𝑏(𝑎(𝜉, 𝑥(()), 𝑥(*)))

Direct quantization only works to some degree.

Converge better

Model change
smaller

…

…

…

𝑎(−, 𝑥 " )

𝑎(−, 𝑥#
" )

𝐹 · 𝑏(−, 𝑥 $ )

𝐹 · 𝑏(−, 𝑥#
$ )

diff across epochs 
should diminish Quantize Diff

Activation change 
smaller

Activation Diff 
Smaller

Quantization Error 
of Diff smaller

[NeurIPS 2022-(b)]
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Accommodate LLM training through 

heterogeneous hardware.
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AI Chips Heterogeneous Computation Capacity  

H100 (2022)

A100 (2020)

L40 (2022)

H200 (2024)
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FlashFlex
Accommodating Large Language Model Training over Heterogeneous Environment

• A heterogeneous LLM training system that supports:
• Data parallelism;
• Pipeline parallelism;
• Tensor model parallelism;

• A scheduling algorithm:
• Two-phase graph partition algorithm

Step (ii) - Partition Step (iii) - Project Step (iv) - RefineStep (i) - CoarsenGlobal Graph

GPU groupsA100 NVLINK-80G 4090-24G 3090-24G 3080-12G Merged GPUs
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FlashFlex
Accommodating Large Language Model Training over Heterogeneous Environment

[Preprint: arxiv.2409.01143]

• A heterogeneous LLM training system that 
supports:
• Data parallelism;
• Pipeline parallelism;
• Tensor model parallelism;

• A scheduling algorithm:
• Two-phase graph partition algorithm

https://github.com/Relaxed-System-Lab/FlashFlex

https://github.com/Relaxed-System-Lab/FlashFlex
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LLM service is NOT all about training.

“90% of  the machine learning demand in the cloud is for inference.”

-- AWS Report



16

Autoregressive Generation

The quick brown => fox

Decode step 1

The quick brown fox => jumps

Decode step 2

Prefill phase: the model takes a 
prompt sequence as input and 
engages in the generation of  a 
key-value cache (KV cache) for 
each Transformer layer.

Decode phase: for each 
decode step, the model 
updates the KV cache and 
reuses the KV to compute 
the output.
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HexGen: Accommodating LLM Inference over Heterogeneity 

[ICML 2024 ]

• HexGen: schedule the generative inference under 

the colocating paradigm;

• HexGen-2: schedule the generative inference 

under the disaggregated paradigm;

[Under Review]
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HexGen
Generative Inference of Large Language Model over Heterogeneous Environment

• An implementation that accommodates tensor model parallelism and pipeline 
parallelism.

• A scheduling algorithm that optimizes pipeline partitions and parallel strategies 
over heterogeneous GPUs. 
• Optimizing the layout of  a pipeline through dynamic programming;
• Solve the global scheduling through a genetic algorithm. 

Network Layers 16-32
Network Layers 1-15

TP
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-1

TP
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https://github.com/Relaxed-System-Lab/HexGen

https://github.com/Relaxed-System-Lab/HexGen


19

Disaggregated Inference
19

• Key ideas:
• Prefill computation on some GPUs;
• Decoding computation on some other 

GPUs;
• Prefill and decoding instances can have 

different parallel configurations;
• Dynamic configuration of  the prefill / 

decoding ratio;
• Overhead: KV-cache communication. 

• Frameworks:
• DistServe, Splitwise.

https://github.com/LLMServe/DistServe

https://github.com/LLMServe/DistServe
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HexGen-2
Disaggregated Generative Inference of LLMs in Heterogeneous Environment

• Scheduling for the disaggregated framework:
• Graph-partition: partition the set of  

heterogeneous GPUs into multiple 
model serving groups, where each 
group could serve a prefill or a decoding 
phase;

• Max-flow: find the current optimal 
parallel strategies for prefill and 
decoding model replicas and generate 
the optimal KV cache communication 
strategy among them;

• Iterative refinement: we iteratively 
repeat the two-phase algorithm to find 
the optimal model placement strategy.
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Summary

Personal page:
https://binhangyuan.github.io/site/

• Accommodate LLM training over heterogeneity:
• To accommodate heterogeneous networks, we do efficient 

system scheduling and algorithm design;
• To accommodate heterogeneous computation, we do 

necessary system extension and efficient system scheduling.
• Accommodate LLM inference over heterogeneity:
• We support co-locating generative inference;
• We also support disaggregated generative inference.   

https://binhangyuan.github.io/site/

