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Amazing Progress of ML/Al

Learn more




The challenge of Today:

(Million $)
Building ML Applications at SOTA scale is expensive!

Further scaling is facing non-linear bottlenecks.




Communication Bottlenecks across Infrastructure

Ccommunication becomes slower, open up more choices (and some can be cheaper);
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Alibaba Cloud < Google Cloud

AAzure m aws

Data Center (Multi-cloud) Spot Instances Serverless Environment Decentralized Network

The more we can optimize communications, the more choices we have
when building our infrastructure.



From Cloud to Decentralized Compute Resource
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Open Science Grid
University of Wisconsin
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TACC

4X 8X 8X+

1628 Mbps
602 Mbps 0 ports

Storage
583MB/s  270.0GB
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V321 Mbps 250

nvme
1008 MB/s  813.1

M1 Mbps K
V317 Mbps 4 ports

DELL PERC
1218MB/s  238.4GB

$0.500/hr
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Accommodate LILM training through

heterogeneous network.
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Pipeline Parallelism
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Decentralized Training of Foundation Models

Decentralized training of FM: the network is 1T00x

slower, but the pre-training throughput is only

1.7~3.5x% slower!

Decentralized fine-tuning of FM: AQ-SGD
communication-efficient pipeline training with

activation compression.

Decentralized Training of Foundation Models in
Heterogeneous Environments

Binhang Yuan', Yongjun He'*, Jared Quincy Davisf, Tianyi Zhang?, Tri Daot,
Beidi Chen!, Percy Liang?, Christopher Re!, Ce Zhang!

TETH Ziirich, Switzerland !Stanford University, USA
{binhang.yuan, yongjun.he, ce.zhang}@inf.ethz.ch
{tz58, jaredq, beidic, trid, pliang, chrismre}@stanford.edu

Abstract

Training foundation models, such as GPT-3 and PaLM, can be extremely expensive, often involving tens
of thousands of GPUs running continuously for months. These models are typically trained in special-
ized clusters featuring fast, homogeneous interconnects and using carefully designed software systems that
support both data parallelism and model/pipeline parallelism. Such dedicated clusters can be costly and
difficult to obtain. Can we instead leverage the much greater amount of decentralized, hetemgeneuus, and
lower-bandwidth interconnected compute? Previous works the set-
ting focus on relatively small models that can be trained in a purely data parallel manner. State-of-1 Lhe art
schemes for model parallel foundation model training, such as Megatron, only consider the homogeneous
data center setting. In this paper, we present the first study of training large foundation models with model

ism in a i regime over a network. Our key technical contribution is a
scheduling algorithm that allocates different computational “tasklets” in the training of foundation models
to a group of decentralized GPU devices connected by a slow heterogeneous network. We provide a formal
cost model and further propose an efficient evolutionary algorithm to find the optimal allocation strategy.
‘We conduct extensive experiments that represent different scenarios for learning over geo-distributed de-
vices simulated using real-world network measurements. In the most extreme case, across 8 different cities
spanning 3 continents, our approach is 4.8 x faster than prior state-of-the-art training systems (Megatron).

Code Availability: https: //github. com/DS3Lab/DT-FM

1 Introduction

Recent years have witnessed the rapid development of deep learning models, particularly foundation mod-
els (FMs) [1] such as GPT-3 [2] and PaLM [3]. Along with these rapid advancements, however, comes
computational challenges in training these models: the training of these FMs can be very expensive — a
single GPT3-175B training run takes 3.6K Petaflops-days [2]— this amounts to $4M on today’s AWS on
demand instances, even assuming 50% device utilization (V100 GPUs peak at 125 TeraFLOPS)! Even the
smaller scale language models, e.g., GPT3-XL (1.3 billion parameters), on which this paper evaluates, re-
quire 64 Tesla V100 GPUs to run for one week, costing $32K on AWS. As a result, speeding up training
and decreasing the cost of FMs have been active research areas. Due to their vast number of model pa-
rameters, state-of-the-art systems (e.g., Megatron[4], Deepspeed|[5], Fairscale[6]) leverage multiple forms
of parallelism [4, 7, 8, 9, 10, 11]. However, their design is only tailored to fast, homogeneous data center
networks.

* Equal contribution.

Fine-tuning Language Models over
Slow Networks using Activation Compression with Guarantees
Jue Wang'*, Binhang Yuan*, Luka Rimanic™, Yongjun Hef, Tri Dao*,
Beidi Chenf, Christopher Re!, Ce Zhang"

TETH Ziirich, Switzerland !Stanford University, USA
{jue.wang, binhang.yuan, luka.rimanic, yongjun.he, ce.zhang} @inf.ethz.ch
{beidic, trid, chrismre } @stanford.edu

Abstract

Communication compression is a crucial technique distributed learni iate their
communication bottlenecks over slower networks. Despite recent intensive studies of gradient compression
for data parallel-style training, ing the acti for models trained with pipeline parallelism
is still an open problem. In this paper, we propose AC-5GD, a novel activation compression algorithm for

ipeline training over slow networks. Different from previous efforts
in activation compression, instead of compressing activation values directly, AC-SGD compresses the changes
of the activations. This allows us to show, to the best of our knowledge for the first time, that one can still
achieve O(1/ VT) convergence rate for non-convex objectives under activation compression, without making
gradient that do not hold for deep learning models with non-linear activation
functions. We then show that AC-SGD can be optimized and implemented efficiently, without additional end-to-
end runtime overhead. We evaluated AC-SGD to fine-tune language models with up to 1.5 billion parameters,
compressing activations to 2-4 bits. AC-SGD provides up to 4.3 end-to-end speed-up in slower networks,
without sacrificing model quality. Moreover, we also show that AC-SGD can be combined with state-of-the-art
gradient to enable “end d : All
between machines, including model gradients, forward activations, and backward gradients are compressed into
lower precision. This provides up to 4.9x end-to-end speed-up, without sacrificing model quality.

Code Availability: https://github. com/DS3Lab/AC-SGD

1 Introduction

Recent efforts in improving communication efficiency for distributed learning have significantly decreased the
dependency of training deep learning models on fast data center networks — the gradient can be compressed
to lower precision or sparsified [1, 2, 3, 4], which speeds up training over low bandwidth networks, whereas
the communication topology can be decentralized [5, 6, 7, 8, 9, 10], which speeds up training over high latency
networks. Indeed, today’s state-of-the-art training systems, such as Pytorch [11, 12], Horovod [13], Bagua [14],
and BytePS [15], already support many of these communication-efficient training paradi
However with the rise of large foundation models [16] (e.g., BERT [17], GPT-3 [18] and CLIP[19]),
ion efficiency via becomes more challenging. Current training systems
for foundation models such as Megatron [20], Deepspeed [21], and Fairscale [22], allocate different layers of
the model onto multiple devices and need to communicate — in addition to the gradients on the models — the

*Equal contribution.

[NeurlPS 2022-(a)l

[NeurlPS 2022-(b)]




Accommodate Communication in a Decentralized network

A bi-level scheduling algorithm based on an extended balanced graph partition to
estimate the communication cost:
= Data parallel communication cost: nodes handling the same stage need to
exchange gradients;
= Pipeline parallel communication cost: nodes handling nearby stages for the same
micro-batch need to communicate activation in the forward propagation and
gradients of the activation in the backward propagation.

(d) perfect matching corresponds
C, to how devices in C; and devices

Device d, in C; communicate in a pipelin%
Device d,
(a) Communication (b) Each partition C; deals (c) Coarsened graph G () Open-loop-traveling-
Topology Graph G with one stage, running data decoding the cost of salesman provides a

over N devices parallel within each partition pipeline parallel pipeline structure



AQ-SG D Converge better
minf (): = Be.pF (b(a(§, x@), x®)) I

Quantization Error Model change
Direct quantization only works to some degree. of Diff smaller smaller

Activation Diff Activation change
Smaller smaller

* (Al: Lipschitz assumptions) We assume that V f, V(fob) and a are L ¢, L ¢4, and £,-Lipschitz, respectively,

d”(f across enoc h S . . recalling that a function g is L4-Lipschitz if
S EPC Quantize Diff lo(@) -9l <Lyle—yll, Vavy.
S h ou /d d Iminis h Furthermore, we assume that ¢ and f o b have gradients bounded by C, and Cjy., respectively, i.e.
s [Va(z)|| < Ca, and |V (fob)(z)|| < Cop-

* (A2: SGD assumptions) We assume that the stochastic gradient g, is unbiased, i.e. E¢[g¢ (z)] =V (), for
all z, and with bounded variance, i.e. E¢||g¢(z) -V f(z)|?> <o?, for all z.

Theorem 3.1. Suppose that Assumptions A1, A2 hold, and consider an unbiased quantization function Q(x) which

satisfies that there exists cq < 1/1/2 such that E||z—Q(z)|| < cg ||z, for all 2.} Let y= m be the learning

rate, where

C— 4CQ€G(1+CG)LfObN .
\/1-2¢5
Then after performing T updates one has
1 (C+Ls)(f(z1)—f*) | 0®+(c@CaCrob)?
- E|V 2< + . 3.1

[NeurIPS 2022-(b)] 0
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heterogeneous hardware.
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Al Chips Heterogeneous Computation Capacity
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FlashFlex

Accommodating Large Language Model Training over Heterogeneous Environment

* A heterogeneous LLM training system that supports:

* Data parallelism;

* Pipeline parallelism;
* Tensor model parallelism;
* A scheduling algorithm:
* 'Two-phase graph partition algorithm

R U U

_ GPU groups

Homogeneous Training Paradigm

Stage-0 Stage-1 Stage-2 Stage-3

Pipeline-0 .3]@,’“ PP :i@\ZPP .q:‘:‘szli, DC1
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FlashFlex

Accommodating Large Language Model Training over Heterogeneous Environment

* A heterogeneous LLLM training system that
supports:
* Data parallelism;
* Pipeline parallelism;
* Tensor model parallelism;
* A scheduling algorithm:
* 'Two-phase graph partition algorithm

https://github.com/Relaxed-System-T.ab/FlashFlex

arXiv:2409.01143v1 [cs.DC] 2 Sep 2024

FLasHFLEX: Accommodating Large Language Model Training over
Heterogeneous Environment

Ran Yan*', Youhe Jiang®", Wangcheng Tao', Xiaonan Nief, Bin Cui?, Binhang Yuan'
"The Hong Kong University of Science and Technology ~ *Peking University

{ryanaf, wangcheng taoj@connect.ust.hk,{xiaonan.nie, bin.

ABSTRACT

Training large language model (LLM) is a computationally inten-
sive task, which is typically conducted in data centers with ho-
mogeneous high-performance GPUs. This paper explores an al-
ternative approach by deploying the training computation across
heterogeneous GPUs to enable better flexibility and efficiency for
heterogeneous resource utilization. To achieve this goal, we pro-
pose a novel system, FLasnFiex, that can flexibly support an asym-
metric partition of the parallel training computations across the
scope of data-, pipeline-, and tensor model parallelism. We fur-
ther formalize the allocation of asymmetric partitioned training
comp over a set of h GPUsasa ined
optimization problem and propose an efficient solution based on a
hierarchical graph partitioning algorithm. Our approach can adap-
tively allocate asymmetric training computations across GPUs,
fully leveraging the available computational power. We conduct
extensive empirical studies to evaluate the performance of Fasi-
Frex, where we find that when training LLMs at different scales
(from 7B to 30B), FLasuFLEX can achieve comparable training MFU
when running over a set of heterogeneous GPUs compared with
the state of the art training systems running over a set of homo-
geneous high-performance GPUs with the same amount of to-
tal peak FLOPS. The achieved smallest gaps in MFU are 11.61%
and 0.30%, depending on whether the homogeneous setting is
equipped with and without RDMA. Our implementation is available
at https://github.com/Relaxed-System-Lab/FlashFlex.

1 INTRODUCTION

Over the past few years, large language models (LLM) have demon-
strated impressive performance and sparked a new wave of exciting
Alapplications [4). However, training these LLMs, such as GPT [35],
Claude [3], Gemini [40), Llama [8, 45], Mixtral [16], Yi [54], Fal-
con [12] etc,, can be extremely computation-intensive, often involv-
ing th ds of GPUs running y for months. The high
cost of deploying such training tasks in a cluster with homogeneous
GPUs has become an obvious obstacle limiting the evolution of
LLMs. In this paper, we explore an alternative approach by distribut-
ing the parallel training computations across heterogeneous GPUs, to
enable greater flexibility in heterogeneous resource utilization and
further democratize the LLM training service.
Distributing parallel training comp

GPUs is a natural option to democratize LLM training. In the current
exciting era of generative Al chip vendors typically release new

Equal contributions are indicated by *
Correspond to Binhang Yuan (biyuanust hk)

.edu.cn, {

ij@ph j biyuan)@ust bk
generations of Al chips every 24 months. For instance, Nvidia in-
troduced the Turing architecture in 2018 [31], Ampere in 2020 [32],
Hopper in 2022 [33), and Blackwell is scheduled for Q4, 2024 [34]
On the other hand, one particular version of an Al chip often re-
mains in use by cloud service platforms, technology companies, or
research institutions for a much longer period. For example, K80
GPUs with Tesla architecture, released in 2006 [30], are still avail-
able on AWS as p2 instances [2]. This observation highlights the
important opportunity to explore effective ways to maximize the
efficiency of such widely available yet heterogeneous hardware to
facilitate more cost-effective and accessible LLM training services.

On the other hand, deploying the large-scale training computa-
tion for LLM over a set of heterogeneous GPUs with different tech-
nique specs would be a challenging task regarding training learning
system design and implementation. To effectively distribute the
training computation over thousands of GPUs, the state-of-the-art
training systems, like Megatron [29] and DeepSpeed [38] usually
supports: (i) tensor model parallelism [26, 29]; (ii) pipeline paral-
lelism [11, 27, 28, 52]; and (iii) data parallelism (with potentially
sharded implementations of parameters, gradients, and optimizer
states across multiple devices, also known as fully sharded data
parallelism) [17, 38, 39, 41]. However, these systems typically only
support homogeneous configurations, which require the entire
training cluster to operate under a fully symmetric setup - This
‘means that all tensor model parallel groups must have the same de-
gree of parallelism, and the same applies to pipeline parallel groups
as well as data or optimizer parallel groups. Such implementation
assumes all the GPUs take the same amount of computation load,
which significantly limits the system efficiency when deploying
the training computation over GPUs with different computation
capability (measured by the peak FLOPS), different device memory
(i.e., HBM) capacity, and different network bandwidth for each pair
of GPUs (inter-node and intra-node).

Concretely, there are two fundamental challenges stemming
from the heterogeneity:
* Di GPU it pability. In h

GPUs can vary si ly in terms of computa-

tion capability (i.e., FLOPS) and memory capacity. This disparity
poses a challenge in distributing the computation across all avail-
able resources. If not properly managed, the most capable GPUs
can be underutilized, while less powerful GPUs can become bot-
tlenecks, leading to inefficiencies and increased training time.
Partitioning the computation to match the capabilities of each
GPU is essential to fully utilize the available hardware.
Different GPU-GPU network bandwidth. The heterogeneous
nature of connections between GPUs, ranging from high-speed

[Preprint: arxiv.2409.01143]
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https://github.com/Relaxed-System-Lab/FlashFlex

LIM service is NOT all about training.

“90% of the machine learning demand in the cloud is for inference.”

-- AWS Report
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Autoregressive Generation

Prefill phase: the model takes a
prompt sequence as input and
engages in the generation of a
key-value cache (KV cache) for

each Transformer layer.

“The quick brown” —

SONIAd3Igan3

(" LARGE LANGUAGE MODEL

av3H SNITIA0ON IOVNONYT]

\ NEXT TOKEN LOGITS

p(“aadvark”) =0.001
p(“aahrus”) =0.0004
p(“aaron”) =0.0008

p(“fox”) =09

[ITTTTTTITTTITT]
A

p(“zyzzyva”) = 0.0024

Decode phase: for each
decode step, the model

updates the KV cache and
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the output.
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exGen: Accommodating LLM Inference over Heterogenei

« HexGen: schedule the generative inference under * HexGen-2: schedule the generative inference

the colocating paradigm; under the disaggregated paradigm;

HEXGEN-2: DISAGGREGATED GENERATIVE INFER-
ENCE OF LLMS IN HETEROGENEOUS ENVIRONMENT

HEXGEN: Generative Inference of Large Language Model
over Heterogeneous Environment

Youhe Jiang*! Ran Yan"! Xiaozhe Yao*2 Yang Zhou® Beidi Chen® Binhang Yuan'

Abstract
Serving generative inference of the large language
model is a crucial component of contemporary
Al applications. This paper focuses on deploy-
ing such services in a heterogencous and cross-

pus. Such extensive training enables them to be remark-
ably adaptable across a broad spectrum of downstream
tasks (Bommasani et al., 2021). In fact, large language mod-
els such as GPT-4 (Bubeck et al., 2023), Llama2-70B (Tou-
vron el al., 2023), and Falcon-180B (Institute, 2023) have

datacenter setting to mitigate the in-
ference costs typically associated with a single
centralized datacenter. Towards this end, we pro-
pose HEXGEN, a flexible distributed inference
engine that uniquely supports the asymmetric
partition of generative inference computations
over both tensor model parallelism and pipeline
parallelism and allows for effective deployment
across diverse GPUs interconnected by a fully
heterogeneous network. We further propose a
sophisticated scheduling algorithm grounded in

ion that can as-

the way Al systems are devel-
oped and deployed, which have nourished a large number
of advanced applications. In such an ecosystem, serving
the generative inference requests for large language models
presents a critical challenge — given the unprecedented
‘model scale, unlike classic machine learning models, paral-
lel inference strategies have to be leveraged to accommodate
the high computational and memory demands while ensur-
ing low-latency generative inference outcomes.

The state-of-the-art inference service of the large language
‘model is usually hosted in a single centralized data center

sign asymmetric inference computation across
the GPUs to fulfill inference requests while main-
taining acceptable latency levels. We conduct an
extensive evaluation to verify the efficiency of
HEXGEN by serving the state-of-the-art LLAMA-
2 (70B) model. The results suggest that HEX-
GEN can choose to achieve up to 2.3x lower
latency deadlines or tolerate up to 4x more re-
quest rates compared with the homogeneous base-
line given the same budget. Our implementa-
tion is available at https://github.com/
Relaxed-System-Lab/HexGen.

1. Introduction

Large language models are distinguished by the vast scale
of parameters being trained over a substantial pre-train cor-

“Equal contribution 'Department of Computer Science and
Engineering, The Hong Kong University of Science and Technol-
ogy, Hong Kong, China “Department of Computer Science, ETH
Zurich, Ziirich, Switzerland *Department of Electrical and Com-
puter Engincering, Carmegie Mellon University Pitburgh, Penn-
sylvania. C to: Binhang Yuan < k>,

Proceedings of the 41°** International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

with high-performance GPUs, which can be
very expensive in terms of the cloud service fee. The high
cost of such jally limits the

zation of this great lcchmque Alternatively, the deploy-
ment of the large language model inference over a hetero-
geneous can be a promisi
direction to reduce the inference cost, which has not been
fully explored. The heterogeneous environment for founda-
tion model inference service can encompass a wide range
of options, including more affordable cloud services (such
as spot instances (Thorpe et al., 2023; Athlur et al., 2022)
and serverless computing (Guo et al., 2022)) to even fully
decentralized platforms (Yuan et al., 2022; Borzunov et al.,
2023) that leverage a diverse set of GPUs contributed by
volunteers in an extreme setting.

However, deploying large language model inference across
a heterogeneous environment presents some unique chal-
lenges. Unlike traditional machine learning models, large
language model inference consists of two different phases: a
prompt phase that handles a sequence of input tokens at once
and a decoding phase where output tokens are generated
step-by-step. Additionally, large language models require
the adoption of specialized parallel inference strategies to
effectively distribute the intensive computations across mul-
tiple GPUs. The two most commonly employed approaches
are tensor model parallelism and pipeline parallelism. Tn

Anonymous authors
Paper under double-blind review

ABSTRACT

Disaggregating the prefill and decoding phases represents an effective new
paradigm for generative inference of large language models (LLM), which elimi-
nates prefill-decoding i and resource all However, it
is still an open problem about how o deploy the disaggregated inference paradigm
across a group of heterogeneous GPUs, which can be an economical alternative
to deployment over homogeneous high-performance GPUs. Towards this end,
we introduce HEXGEN-2, a distributed system for efficient and economlcal LLM

serving on GPUs g the di Built on
top of HEXGE!\ the core component of HEXGE!\ 2 is a scheduling algomhm that
the all of d LLM i and com-

munications over heterogeneous GPUs and network connections as a constraint
optimization problem. We leverage the graph partitioning and max-flow algo-
rithms to pti resource all parallel ies for distinct i

phases, and the of inter-phase key-value (KV) cache i

‘We conduct extensive experiments to evaluate HEXGEN-2, i.e., on OPT (30B)
and LLAMA-2 (70B) models in various real-world settings, the results reveal that
HEXGEN-2 delivers up to a 2.0x and on average a 1.3x improvement in serving
throughput, reduces the average inference latency by 1.5x compared with state-
of-the-art systems given the same price budget, and achieves comparable inference
performance with a 30% lower price budget.

1 INTRODUCTION

Large Language Models (LLMs). such as OPT Zhang et al. (2022), LLAMA Touvron et al.|(2023),
GPT |OpenAl (2024), GEMINI Reld et al. (2024), CLAUDE Amhxoplc (2024) :md VlIxTRAL Jiang
et al./(2024a) have shown across various ad However,
deploying the generative inference service for such LLMs can be costly, typically requiring a sub-
stantial number of homogeneous, high-performance GPUs to meet the service demands, such as first
token latency and generation throughput. In this papcr we explore an alternative solution that de-
ploys the most digm over a set of heterogeneous
GPUS to provide an efficient and economical LLM service.

Disaggregated inference is currently the most efficient framework for serving the generative in-
ference requests of LLMs Zhong et al. (2024); Patel et al./(2024). By splitting the prefill phase
(compute-bounded) and decoding phase (HBM I0-bounded) across different GPUs, the disaggrega-
tion significantly reduces interference between different requests and enables more flexible parallel
configurations for the two phases. When compared with colocating the prefill and decoding com-

the resource usage and enhances the scalability and
efficiency of the LLM inference service. Recent efforts Jiang et al.|(2024b): Griggs et al.| (2024);
Zhao e al. (2024); Mio et al. (2024) have shown that serving LLMs with heterogeneous GPUs

can be a over high- GPUs. Hetero-
geneous i o reduce i service costs by leveraging
the wide availability of dl\'crsc GPU types across and private i Note

that Nvidia typically releases new GPU generations every 24 months, e.g., Turing in 2018, Ampere
in 2020, Hopper in 2022, and Blackwell scheduled for Q4 2024; but one particular version of GPU
general remains in use for a much longer period]'}

'For example, Tesla K80 GPUs, released in 2006, are still available on AWS as p2 instances

[ICML 2024 ]

[Under Review]
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HexGen

Generative Inference of Large Language Model over Heterogeneous Environment

* An implementation that accommodates tensor model parallelism and pipeline

parallelism.

* A scheduling algorithm that optimizes pipeline partitions and parallel strategies

over heterogeneous GPUs.

* Optimizing the layout of a pipeline through dynamic programming;

* Solve the global scheduling through a genetic algorithm.

https://github.com/Relaxed-System-T.ab/HexGen
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https://github.com/Relaxed-System-Lab/HexGen

Disaggregated Inference

* Key ideas:

* Pretfill computation on some GPUs;

Requests

h 4

Controller

. Decoding computation on some other

GPUs; u /,;"’T;;//ﬂ . [
* Prefill and decoding instances can have Exenlinsiance Bec il nes
. . LLM Model LLM Model
different parallel configurations; KV Cache G
. . [ epu | [ cpu | Transfer || ePu | [ eru |
* Dynamic configuration of the prefill / o [ om0 | N ==
dCCOding ratio; Parallel Runtime B Parallel Runtime L

* Overhead: KV-cache communication. httos: / /oithub.com /LI MServe /DistServe

* Frameworks:
* DistServe, Splitwise.



https://github.com/LLMServe/DistServe

HexGen-2

Disaggregated Generative Inference of LLMs in Heterogeneous Environment

* Scheduling for the disaggregated framework:

* Graph-partition: partition the set of
heterogeneous GPUs into multiple
model serving groups, where each
group could serve a prefill or a decoding
phase;

* Max-flow: find the current optimal
parallel strategies for prefill and
decoding model replicas and generate

the optimal KV cache communication
strategy among them;

 Iterative refinement: we iteratively
repeat the two-phase algorithm to find
the optimal model placement strategy.
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Summary

* Accommodate LLM training over heterogeneity:

* To accommodate heterogeneous networks, we do efficient
system scheduling and algorithm design;

* To accommodate heterogeneous computation, we do

necessary system extension and efficient system scheduling.

* Accommodate LLM inference over heterogeneity:
* We support co-locating generative inference;

e We also support disaggregated generative inference.

Personal page:
https://binhangvuan.github.io/site
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https://binhangyuan.github.io/site/

